Physical Interactions and Functional Coordination between the Core Subunits of Set1/Mll Complexes and the Reprogramming Factors

نویسندگان

  • Zhenhua Yang
  • Jonathan Augustin
  • Jing Hu
  • Hao Jiang
  • Wei Xu
چکیده

Differentiated cells can be reprogrammed to the pluripotent state by overexpression of defined factors, and this process is profoundly influenced by epigenetic mechanisms including dynamic histone modifications. Changes in H3K4 methylation have been shown to be the predominant activating response in the early stage of cellular reprogramming. Mechanisms underlying such epigenetic priming, however, are not well understood. Here we show that the expression of the reprogramming factors (Yamanaka factors, Oct4, Sox2, Klf4 and Myc), especially Myc, directly promotes the expression of certain core subunits of the Set1/Mll family of H3K4 methyltransferase complexes. A dynamic recruitment of the Set1/Mll complexes largely, though not sufficiently in its own, explains the dynamics of the H3K4 methylation during cellular reprogramming. We then demonstrate that the core subunits of the Set1/Mll complexes physically interact with mainly Sox2 and Myc among the Yamanaka factors. We further show that Sox2 directly binds the Ash2l subunit in the Set1/Mll complexes and this binding is mediated by the HMG domain of Sox2. Functionally, we show that the Set1/Mll complex core subunits are required for efficient cellular reprogramming. We also show that Dpy30, one of the core subunits in the complexes, is required for the efficient target binding of the reprogramming factors. Interestingly, such requirement is not necessarily dependent on locus-specific H3K4 methylation. Our work provides a better understanding of how the reprogramming factors physically interact and functionally coordinate with a key group of epigenetic modulators to mediate transitions of the chromatin state involved in cellular reprogramming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caenorhabditis elegans chromatin-associated proteins SET-2 and ASH-2 are differentially required for histone H3 Lys 4 methylation in embryos and adult germ cells.

Methylation of histone H3 lysine 4 (H3K4me), a mark associated with gene activation, is mediated by SET1 and the related mixed lineage leukemia (MLL) histone methyltransferases (HMTs) across species. Mammals contain seven H3K4 HMTs, Set1A, Set1B, and MLL1-MLL5. The activity of SET1 and MLL proteins relies on protein-protein interactions within large multisubunit complexes that include three cor...

متن کامل

Development and Use of Assay Conditions Suited to Screening for and Profiling of SET-Domain-Targeted Inhibitors of the MLL/SET1 Family of Lysine Methyltransferases.

Methylation of histone H3 lysine-4 (H3K4) is an important, regulatory, epigenetic post-translational modification associated with actively transcribed genes. In humans, the principal mediators of this modification are part of the MLL/SET1 family of methyltransferases, which comprises six members, MLLs1-4 and SET1A/SET1B. Aberrations in the structure, expression, and regulation of these enzymes ...

متن کامل

An Ash2L/RbBP5 Heterodimer Stimulates the MLL1 Methyltransferase Activity through Coordinated Substrate Interactions with the MLL1 SET Domain

Histone H3 lysine 4 (K4) methylation is a prevalent mark associated with transcription activation and is mainly catalyzed by the MLL/SET1 family histone methyltransferases. A common feature of the mammalian MLL/SET1 complexes is the presence of three core components (RbBP5, Ash2L and WDR5) and a catalytic subunit containing a SET domain. Unlike most other histone lysine methyltransferases, all ...

متن کامل

Targeting human SET1/MLL family of proteins

The SET1 family of proteins, and in particular MLL1, are essential regulators of transcription and key mediators of normal development and disease. Here, we summarize the detailed characterization of the methyltransferase activity of SET1 complexes and the role of the key subunits, WDR5, RbBP5, ASH2L, and DPY30. We present new data on full kinetic characterization of human MLL1, MLL3, SET1A, an...

متن کامل

A theoretical study on halogen-π interactions: X-C2-Y…C8H8 complexes

M06-2X functional was employed to study halogen-π interactions in X-C2-Y…C8H8 complexes (X, Y=H, F, Cl, and Br). In fact, interactions of mono- or di-halogenated acetylenes and planar cyclooctatetraene as an anti-aromatic π system were considered. Relationship between binding energies of the complexes and charge transfer effects was investigated. Also, electronic charge density values were calc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015